Adaptive Negotiation-rules Acquisition Methods in Decentralized AGV Transportation Systems by Reinforcement Learning with a State Space Filter
نویسندگان
چکیده
In this paper, we introduce an autonomous decentralized method for multiple Automated Guided Vehicles (AGVs). In our proposed system, each AGV as an agent computes its transportation route by referring to the static path information. route. Once potential collisions are detected, one of the two agents chosen by a negotiation rule modifies its route plan. The rules are improved by reinforcement learning with a state space filter. Then, the performance is confirmed with regard to the adaptive negotiation rules.
منابع مشابه
A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملUsing a Deep Reinforcement Learning Agent for Traffic Signal Control
Ensuring transportation systems are efficient is a priority for modern society. Technological advances have made it possible for transportation systems to collect large volumes of varied data on an unprecedented scale. We propose a traffic signal control system which takes advantage of this new, high quality data, with minimal abstraction compared to other proposed systems. We apply modern deep...
متن کاملDecentralized Model Reference Adaptive Control of Large Scale Interconnected Systems with Time-Delays in States and Inputs
This paper investigates the problem of decentralized model reference adaptive control (MRAC) for a class of large scale systems with time varying delays in interconnected terms and state and input delays. The upper bounds of the interconnection terms are considered to be unknown. Time varying delays in the nonlinear interconnection terms are bounded and nonnegative continuous functions and thei...
متن کاملModel-Based Average Reward Reinforcement Learning
Reinforcement Learning (RL) is the study of programs that improve their performance by receiving rewards and punishments from the environment. Most RL methods optimize the discounted total reward received by an agent, while, in many domains, the natural criterion is to optimize the average reward per time step. In this paper, we introduce a model-based Average-reward Reinforcement Learning meth...
متن کاملHierarchical Neuro-Fuzzy Systems Part II
This paper describes a new class of neuro-fuzzy models, called Reinforcement Learning Hierarchical NeuroFuzzy Systems (RL-HNF). These models employ the BSP (Binary Space Partitioning) and Politree partitioning of the input space [Chrysanthou,1992] and have been developed in order to bypass traditional drawbacks of neuro-fuzzy systems: the reduced number of allowed inputs and the poor capacity t...
متن کامل